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solution 

K Y M Wongt, D Sherringtont, P MottishawS, R DewarS and 
C De Dominicis§ 
t Physics Department, Imperial College of Science and Technology, London SW7 282, UK 
f Department of Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK 
§ Service de Physique Thtorique, CEN-Saclay, 91 191 Gif-sur-Yvette, France 

Received 21 September 1987 

Abstract. We calculate the ground-state cost function/energy for graph bipartitioning and 
spin glasses on networks with fixed finite valences, allowing a continuous distribution for 
the effective field. Compared with previous calculations using a field distribution in integral 
multiples of the coupling strength J, the ground-state energy is higher by less than one per 
cent, although the distribution itself is altered drastically. 

The graph bipartitioning problem [ 11 is a typical example of applying techniques from 
the theory of spin glasses to study complex optimisation. In this problem, one has a 
set of randomly connected vertices (which we call a graph) and the issue is to partition 
them into two subsets of equal size, so that the number of connections between the 
two sets (or cost function) is minimised. This is equivalent to finding the ground state 
of a randomly connected ferromagnetic Ising model subject to the constraint that the 
total magnetisation is zero [2]. It is also related to the problem of a spin glass on a 
random network. 

Our concern is with averages over ensembles of statistically equivalent graphs, with 
particular regard to the average minimal cost or ground-state energy, and with the 
limit as the total number of vertices N tends to infinity. Such solutions, analytic or 
simulational, have been proposed for several different types of graph [ 1,3-71. In this 
letter, we concentrate on the case in which each vertex of the graph is connected to 
exactly c other vertices and c is independent of N (we refer to this as fixed intensive 
valence). 

In an earlier letter [7] it was shown that, within replica-symmetric theory, the cost 
function is determined by the distribution of an auxiliary field, which obeys a self- 
consistency equation equivalent to that for the effective field due to descendents of 
Ising spins on a corresponding Bethe lattice. In that study, as in related studies for 
graphs of average intensive valence [4,8], the self-consistent field equation was solved 
subject to the assumption that the auxiliary field at the ground state could only take 
values which are integral multiples of the coupling strength J. This yielded values for 
the minimal cost a few per cent lower than those obtained by simulation [5]. In the 
Bethe lattice there exists, however, another solution with both a continuous part and 
delta-function peaks at integral multiples of J [9-111. Indeed, it has recently been 
shown in the case of an averaged finite-valenced network [12] that the solution with 
delta-function peaks only is unstable against the introduction of a continuous field 
distribution. 
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In this letter we evaluate the stable field distribution for a variety of values of c 
and investigate the consequences for the minimal cost. We find that the distribution 
is changed significantly compared with the integral field approximation, but the 
ground-state energy is increased by less than one per cent. We also consider further 
the relationship with the Bethe lattice, showing that the Bethe approximation for the 
free energy is exact for this graph partitioning problem. 

We start by re-iterating the relation of the graph bipartitioning problem to its 
magnetic analogue and highlighting the relevant fundamental formulae. With each 
vertex i we associate an king spin Si which takes the value +1 if the vertex belongs 
to one set of the bipartitioning and -1 if it belongs to the other. The number of 
connections N,, between the two sets, which is the cost function to be minimised, is 
then related to the energy E of the corresponding ferromagnet, 

where (U) denotes a pair of connected vertices, via the relation 

Nc,=  E / 2 J + ; c N .  ( 2 )  

Since the two sets have to be of equal size, the total magnetisation is constrained to 
be zero. Henceforth we shall employ the language of the magnetic analogue. 

Within the replica-symmetric ansatz, the spin configuration at a temperature T = p-'  
is described by the local field distribution 

P ( h ) =  fi ( I d O i r ( a i )  
i = l  

( 3 )  

where r(@) is an auxiliary field distribution satisfying the self-consistency equation 

and .$(a) is the function 

e ( @ )  = p-' tanh-'(tanh p J  tanh pa). ( 5 )  

Both P ( h )  and r(@) are even functions of their arguments. The free energy per site 
f is completely determined by n(@), 

-pf= - t c  In cosh p J +  c dol'(@) ln(1- tanh' pJ tanh' p @ )  

- c  I d@., d o 2  7~(@.,)r(@~) ln(1 f tanh  p J  tanh pa., tanh pa2) 

I 
+ dh P ( h )  In 2 cosh ph.  I 

The ground-state energy follows from the limit of the free energy as T + 0. 
Before discussing the solution to (4) let us comment on the relation of the above 

results to a system on a Bethe lattice. Earlier [7], we pointed out that (4) is identical 
with that for the distribution of fields due to descendents on a Bethe lattice of Ising 
spins with ferromagnetic exchange J [13], with the constraint that r(@) is even, 
reflecting a zero magnetisation constraint; explicitly, the [(Qi); i = 1, . . . , c correspond 
to the individual fields due to first descendents at a site on the Bethe lattice. P( h )  is 
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the total field distribution. These field distributions are also those appropriate to a * J  
Ising spin glass on a Bethe lattice [13, 141, where the exchange disorder ensures that 
the even solution is the relevant one. 

Let us now consider the relation off  to a Bethe solution. If we consider a site on 
the Bethe lattice and represent the effects of the rest of the lattice by a local field h, 
then the average free energy per site is given by 

-pfsite = I dh P (  h )  In 2 cosh ph.  (7)  

On the other hand, if we consider a bond on the Bethe lattice while representing the 
effects of the rest of the lattice by the effective fields and Q2 on the bond-ended 
sites, the average free energy per bond is given by 

-Pfexch = I d@, d@2 d @ I ) d @ ~ )  

xln[2 eo’ coshp(@l+@2)+2e-P’ coshp(@l-@2)].  (8)  

The Bethe approximation to the free energy of a real lattice with b bonds per site is 
then given by 

(9) 
For the fixed valence network under consideration b = f c  and equations (6) and (9) 
are identical. Thus for this problem the Bethe approximation is exact, at least at the 
replica-symmetric level. 

We now proceed to evaluate explicitly the T = 0 field distribution and the ground- 
state energy of the network. At T = 0 the function ((@), equation ( 5 ) ,  takes an especially 
simple form: 

f = bfexch - (2b - 1 )Lite. 

J @ 2 J  

( (@I=  @ - J < @ < J  (10) 

so that (4) has a solution in which @ only takes values which are integral multiples 
of J. Since this solution is unstable against continuous fluctuations [9-121 we now 
consider the more general stable solution. 

It is more convenient to consider the field distribution P(() which is related to 

{ - J  @ s  -J  

d@) by 

P(5) d(= n(@) d@ (11) 

where 5 and @ are related by ( 5 ) .  The self-consistency equation for P(() is therefore 

In this letter, we propose a sequence of successive approximations to the true 
ground state which converges very rapidly. The key observation is that, by virtue of 
equation ( lo) ,  a distribution function P(0, with 5 being integral multiples of J /  M 
( M  integral) only, is a possible self-consistent solution to (12). In fact, our previous 
result corresponds to the case M = 1. In the limit M +CO, we expect the approximation 
to approach the continuous distribution of the true ground state. As we shall see, the 
ground-state energy acquires four-figure precision for M less than 100. 
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. 

03. 

To be specific, let us write the distribution function P(5) as 

( d )  

;- (e )  i--.IL 

where the ri satisfy the constraint 
M 

T 0 + 2  q = 1 .  
i = l  

The self-consistency equation (9) then becomes 
r. I = c (TjTTjl.. * r j k )  O s i < M  

jz+ . . . + j k =  i 

where k = c - 1, and each of the variables jl, . . . , jk runs from -M to M with the 
convention v-j = vj. Similarly, the local field distribution is given by 

where 

From (6), the ground-state energy is then given by 

Figures l ( a ) - ( d )  show the resulting field distribution {ri} for a trivalent network for 
a variety of choices of M. It can be seen that, as M increases, the peaks at 6 = 0 and 
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*.l become more and more pronounced, suggesting a delta-function component in the 
continuous field limit. The heights of the other peaks are relatively constant. 

It is therefore expedient to write P'(5) in the continuous limit as 

W 5 )  = f o S ( 5 )  +f1(6 (5 - J )  + a( 5 + J)) +f(5)  (18) 

where f(5) is a continuous function. Table 1 shows the numerical results for fa, f, 
and f(5) at representative points for a trivalent network. They are related to the { ni} 
via the relations 

fo= lim (no-nl)  
M +cc 

The function P'( 6) in the continuous limit is plotted in figure 1( e). Table 1 also shows 
the numerical result for the ground-state energy using (17). It is evident that the data 
approach the continuous limit rapidly. In fact, it acquires a four-figure precision for 
M less than 100. We have checked these results by assuming a continuous P(5) and 
computing the integral in equation (4) numerically at each step of the iteration. The 
results are in good agreement. 

Numerical results for networks of other valences are shown in table 2.  It should 
be noticed that networks with even valences do not have the delta-function peak at 
the zero field position. 

It is observed that the fraction of zero field sites, as indicated by fa for odd valences, 
is greatly reduced when compared with the integral field case. Take, for example, the 

Table 1. Values of fo, f l ,  f ( 5 )  and the ground-state energy for a trivalent network. 

M fo f(0.2) f(0.4) f (0.6) f ( O . 8 )  f l  - E J N J  

5 0.1076 0.2403 0.2338 0.225 1 0.2144 0.21 80 1.2750 
10 0.1070 0.2408 0.2343 0.2256 0.2148 0.2183 1.2749 
20 0.1069 0.2410 0.2345 0.2257 0.2149 0.2184 1.2749 
40 0.1068 0.2410 0.2345 0.2257 0.2149 0.2144 1.2749 

100 0.1068 0.2410 0.2345 0.2257 0.2149 0.2184 1.2749 

Table 2. Field distribution and ground-state energy for networks of valences 3 s c c 9 .  
E,,,, and E,,, are the ground-state energies in the continuous and integral field ansatz, 
respectively. 

C fo f l  
~~ 

3 0.1068 
4 
5 0.0462 
6 
7 0.0261 
8 
9 0.0166 

0.2184 
0.2960 
0.2926 
0.3301 
0.3290 
0.3516 
0.3515 

0.2282 1.2749 1.2778 
0.2040 1.4833 1.4880 
0.1843 1.6849 1.6911 
0.1699 1.8478 1.8554 
0.1580 2.0129 2.0290 
n.1484 2.1528 2.1613 
0.1402 2.2955 2.3058 
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trivalent network. In the integral field approximation a site has zero field so long as 
its two descendents have opposing fields. In the case of a continuous field, however, 
a site does not necessarily have a zero field even if its two descendents have opposing 
fields; if the field on the descendent sites are, say, +J and -0.5J, the field on the site 
is + O S  and is still polarised. We therefore expect the fraction of sites with zero field 
to be greatly reduced. 

As the valence c increases, the weight of the continuous distribution decreases. 
Furthermore, the peak f o  approaches zero as the valence c increases. We note in 
passing that when the valence is extensive, no crazy spins are present. The peak f , ,  
representing all the contributions for J < @ S ( c  - 1)J, increases with c. I t  is also 
interesting to note that the value off,  for valences 2 n  and 2 n  + 1 are very close. 

Finally we compare the ground-state energy with our previous calculation using 
the integral field ansatz [7]. It is found that the continuous field distribution, though 
drastically different from the integral field distribution, nevertheless gives ground-state 
energies nearly the same as the latter. In fact, the ground-state energy E,,,, is higher 
than Eint by less than 1 per cent. We conclude that the integral field approximation, 
though unstable, nevertheless gives very good ground-state energy estimates. 

We conclude this report by the following remarks. First, the ground-state solution 
to the Viana-Bray model of a spin glass [4,8,16] and the corresponding problem of 
equipartitioning graphs of average intensive valence should also be modified in the 
same way. Thus the assumption that the effective field consists of peaks at integral 
multiples of J should likewise be replaced by one consisting of both delta-function 
peaks and a continuous distribution [12]. The second remark concerns the replica- 
symmetry-breaking solution of the finite-valenced network. Recent results for the spin 
glass on the Bethe glass indicate that replica symmetry is broken at zero temperature 
[17,18],  and our solution in this letter is apparently only a first step in finding the true 
ground state of the system. It is therefore desirable to examine how the effective 
field distribution and the free energy are modified accordingly. Such a study will un- 
doubtedly be a topic of interest in the near future. 

We thank Professor D J Thouless for informing us of his work on the continuous field 
distribution prior to publication. Financial assistance from the Science and Engineering 
Research Council of the United Kingdom is gratefully acknowledged. One of us (PJM) 
thanks the Centre d’Etudes NuclCaires de Saclay for their hospitality during part of 
the time this work was being performed. 

Note added in proof: Since this letter went to press we have received a preurint bv Katsura et a /  r191 which. . .  
in the context of the Bethe approximation to a * J  king spin glass, also gave solutions for P(5) for c = 3 ,  
M = 1 , 2 , 3 , 4 .  
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